1 | 1 | 1 | |||
= 2 ⇔ | = logxx + logxy = 1 + logxy , zatem: logxy = − | ||||
logxxy | 2 | 2 |
1 | 1 | |||
logx/yx = U{1}{logx{y/x} = | = | ... podstaw | ||
logxy − logxx | logxy − 1 |
1 | 1 | 1 | ||||
źle ....logx/yx = | = | = | ||||
logx(x/y) | logxx − logxy | 1 − logxy |
1 | ||
... i teraz podstaw: logxy = − | ||
2 |