test sprawdzajacy
Karool: Wiadomo, że a=log2 (5) i b=log3 (125). Zatem log25 (12) jest równy :
A. 3a+2b/2ab
B. 6a+b/4ab
C. ab+3/6a
D. 2ab+6/3a
20 gru 12:47
Janek191:
a = log
2 5 b = log
3 125 = log
3 5
3 = 3 log
3 5
zatem
1 | | b | | 3 | |
| = log5 2 i |
| = log3 5 ⇒ |
| = log5 3 |
a | | 3 | | b | |
Mamy
log
25 12 = log
52 12 = 0,5 log
5 12 = 0,5 *( log
5 3 + log
5 4) =
| 3 | | 3 | | 1 | | 1,5 | | 1 | |
= 0,5 *( |
| + 2 log5 2) = 0,5*( |
| + 2* |
| ) = |
| + |
| = |
| b | | b | | a | | b | | a | |
| 1,5 a + b | | 3 a + 2 b | |
= |
| = |
| |
| a*b | | 2 a*b | |
20 gru 20:27
5-latek: Witaj
Janek191 
Ciekawe czy zdałeś ten test sprawdzający ?
20 gru 20:33