Wielomiany
Poziomka7: Wyznacz resztę z dzielenia wielomianu w przez trojmian p(x)=x2−4x−5, wiedząc, że liczba 5 jest
pierwiastkiem wielomianu w oraz w(−1)=6.
19 gru 16:30
sushi_gg6397228:
jaka postac bedzie miała reszta ?
19 gru 16:31
Eta:
R(x)=−x+5
19 gru 16:32
Poziomka7: Odpowiedz jest dobra, ale jak to rozwiązać?
19 gru 17:52
Eta:
W(x)=P(x)*Q(x) +R(x)
P(x)= (x−5)(x+1)
Reszta z dzielenia jest wielomianem co najwyżej stopnia pierwszego R(x)=ax+b
W(x)=(x−5)(x+1)*Q(x)+ ax+b
W(5}=0 ⇒ 0*Q(5)+5a+b =0 ⇒ 5a+b=0
W(−1)=6 ⇒ 0*Q(−1) −5a+b= 6 ⇒ −a+b=6
− −−−−−−−−−−
6a= −6 ⇒ a=−1 to b=5
zatem : R(x) = −x+5
19 gru 18:02
Eta:
I co?
Pewnie poszła na
poziomki ? ......... wróci w czerwcu , to podziękuje
19 gru 18:25
19 gru 18:35