|AC|=√2 , |MB|=1−a , a∊(0,1)
1/ Z tw. Pitagorasa w ΔBMC: k2= 1+(1−a)2 = a2−2a+2
z tw. cosinusów w trójkącie AMC:
| (√2)2+k2−a2 | 2−a | |||
cosα= | = ..........= | |||
| 2√2*k | √2*√a2−2a+2 |
0<a<1
|AC|=√2
|MB|=1−a
|CM|2=12+(1−a)2
|CM|2=1+1−2a+a2=2−2a+a2⇔
|CM|=√a2−2a+a
| 1 | √2 | √2 | a | |||||
PΔMAC= | *√2*a*sin(45o)= | *a* | = | |||||
| 2 | 2 | 2 | 2 |
| 1 | 1 | |||
PΔMAC= | *|AC|*|CM|*sinδ= | *√2*√a2−2a+a*sinδ⇔ | ||
| 2 | 2 |
| √2*(a2−2a+2) | ||
PΔMAC= | *sinδ | |
| 2 |
| √2*(a2−2a+2) | a | ||
*sinδ= | ⇔ | ||
| 2 | 2 |
| a | ||
sinδ= | ||
| √2*(a2−2a+2) |
| √(a−2)2 | |a−2| | |||
cosδ= | = | |||
| √2*(a2−2a+2) | √2*(a2−2a+2) |
| 2−a | ||
cosδ= | ||
| √2*(a2−2a+2) |