Sinus i cosinus kata
astrolog: Dany jest kwadrat ABCD o boku 1. Niech punkt M nalezy do AB a punkt N do AC, AM=a, N jest rozny
od C. Oblicz sinus i cosinus kata MCN.
16 gru 12:49
grace: fajny temat
18 gru 21:07
Astrolog:
18 gru 21:07
Astrolog:
18 gru 21:08
Astrolog:
18 gru 21:08
Astrolog:
18 gru 21:08
Eta:
|AC|=
√2 , |MB|=1−a , a∊(0,1)
1/ Z tw. Pitagorasa w ΔBMC: k
2= 1+(1−a)
2 = a
2−2a+2
z tw. cosinusów w trójkącie AMC:
| (√2)2+k2−a2 | | 2−a | |
cosα= |
| = ..........= |
| |
| 2√2*k | | √2*√a2−2a+2 | |
sinα= +
√1−cos2α=...........
18 gru 21:54
Mila:
0<a<1
|AC|=
√2
|MB|=1−a
|CM|
2=1
2+(1−a)
2
|CM|
2=1+1−2a+a
2=2−2a+a
2⇔
|CM|=
√a2−2a+a
| 1 | | √2 | | √2 | | a | |
PΔMAC= |
| *√2*a*sin(45o)= |
| *a* |
| = |
| |
| 2 | | 2 | | 2 | | 2 | |
| 1 | | 1 | |
PΔMAC= |
| *|AC|*|CM|*sinδ= |
| *√2*√a2−2a+a*sinδ⇔ |
| 2 | | 2 | |
| √2*(a2−2a+2) | |
PΔMAC= |
| *sinδ |
| 2 | |
porównujemy pola:
√2*(a2−2a+2) | | a | |
| *sinδ= |
| ⇔ |
2 | | 2 | |
√2*(a2−2a+2)*sinδ=a
==============
cosδ licz z jedynki tryg.
| √(a−2)2 | | |a−2| | |
cosδ= |
| = |
| |
| √2*(a2−2a+2) | | √2*(a2−2a+2) | |
==================
18 gru 21:57
Eta:
18 gru 22:03