matematykaszkolna.pl
parametr trygonometria intoxicate: Dla jakich wartości parametru k∊R równanie sin6x+cos6x=k ma rozwiązanie?
13 gru 15:01
ICSP: Wykorzystaj wzór na sumę sześcianów.
13 gru 15:09
zeesp: cos2x=1−sin2x cos6x=(cos2x)3=(1−sin2x)3 sinx=t∊[−1,1] czyli pytamy, dla jakich k, t6+(1−t2)3=k ma rozwiązanie... jeżeli t∊[−1,1] to zastanów się jakie wartości może mieć t6+(1−t2)3
13 gru 15:12
Eta: Korzystamy ze wzorów a6+b6= (a2+b2)3−3a2b2(a2+b2) sin2x+cos2x=1 i 2sinx*cosx=sin(2x) sin6x+cos6x= (sin2x+cos2x)2−3sin2x*cos2x(sin2x+cos2x)=
 1 3 
=1−3*

(2sinx*cosx*2sinx*cosx)*1= 1−

*sin2(2x)
 4 4 
to
 3 4 
1−

sin2(2x)=k ⇔ sin2(2x)=

(1−k)
 4 3 
sin2(2x) ∊ <0,1> rozwiąż układ nierówności
4 4 

(1−k) ≥0 i

(1−k) ≤1
3 3 
.......................................... i podaj odp: k∊ ............
13 gru 15:13
intoxicate: dziękuję emotka
13 gru 15:28
Eta: No i ładnie emotka
13 gru 15:32