matematykaszkolna.pl
trygonometria lena: Oblicz sinus i cosinus:
  
a) cos

 4 
 15π 
b)sin

 8 
12 gru 12:00
Jerzy: skorzystaj z jedynki trygonometrycznej i ustal odpowiedni znak
12 gru 12:01
lena: ja tak to zrobiłam, ale nie wiem czy dobrze
    π π 
cos

=cos(2π+

)=cos

=cos(π+

)=−cos

=0
 4 2 2 2 2 
12 gru 12:07
Jerzy: sin2x + cos2x = 1
12 gru 12:12
lena:
 33 
z jedynki trygonometrycznej wychodzi mi że sin2x=

π i co dalej ?
 16 
12 gru 12:17
Kati: Lena, to co wcześniej pisałaś było ok tylko, że cos 2 To cos 270
12 gru 12:20
Kati: cos270 obliczasz z definicji, czyli rysujesz kąt, wyznaczasz x, y i liczysz y/r
12 gru 12:22
lena: a można tak ? cos270⁰=cos(180⁰+90⁰)=−cos 90⁰=0
12 gru 12:26
Jerzy: źle przeczytałem zadanie ... cos270o = cos(180o + 90o) = −cos90o = 0
12 gru 12:27
Jerzy: dokładnie tak emotka
12 gru 12:27
lena: a drugi przykład to będzie tak?
 15π π π 
sin

=sin(2π−

)=−sin

 8 8 8 
12 gru 12:30
Jerzy: tak
12 gru 12:31
lena: dziękuję za pomoc Kati i Jerzy emotka
12 gru 12:32
Kati: π8 to 18 ze 180, więc 22.5
12 gru 12:34
Jerzy:
 π 
tak , ale nie musisz tego dzielić ... odp: = −sin

 8 
12 gru 12:39
Mila:
  π π 2 
cos

=cos(2π−

)=cos

=

 4 4 4 2 
 15π π π 
sin

=sin(2π−

)=−sin

 8 8 8 
 π 2 
cos

=

 4 2 
 π π π π 
cos

=cos2

−sin2

=1−2sin2

 4 8 8 8 
 π 2 π 
1−2sin2

=

oblicz sobie sama sin

 8 2 8 
12 gru 18:43