ile jest liczb dwucyfrowych w których zapisie występuje cyfra 1 i cyfra 7
Hadasz: ile jest liczb dwucyfrowych w których zapisie występuje cyfra 1 i cyfra 7
9 gru 21:58
Hadasz: Z jakiego wzoru to obliczyć?
9 gru 21:58
Mila:
17
71
9 gru 22:03
Hadasz: Co przez to rozumiesz Milu
Poza tym nie chodzi mi o zwykle wypisywanie liczb, a policzenie ich jakąś metoda
9 gru 22:08
52: Przy takim zadaniu brak o jakąkolwiek metodę. To zadanie jest proste.
9 gru 22:11
Mila:
Zanim zastosujemy wzory, to trzeba się kierować zdrowym rozsądkiem,
są tylko dwie liczby dwucyfrowe w których występuje 1 i 7 w zapisie .
Natomiast będzie inaczej, jeżeli będzie takie zadanie :
Ile jest liczb dwucyfrowych w których zapisie występuje cyfra 1 lub cyfra 7.
To jakie masz to zadanie, dokładnie popatrz do książki.
9 gru 22:14
J:
permutacje zbioru dwuelementowego : 2! = 2
9 gru 22:14
PW: Pewnie znowu "własnymi słowami". Na pewno w treści zadania było "cyfra 1 i cyfra 7"?
9 gru 22:18
fifi: No jeśli "i" to chyba nic trudnego:
17 i 71
9 gru 22:19
Hadasz: w podpunkcie b mam 1 lub 7.
W podpunkcie a te liczby to 17 i 71, bo zbior od 10−99, a jak bedzie w zbiorze czterocyfrowym?
To wtedy jak liczyć?
A i w "cyfra 1 lub cyfra 7" to prawidłowo jest jak napiszę 1*7*10=70? Czy inaczej to liczyc
9 gru 22:20
PW: Mistrzostwo powiatu w komunikowalności.
9 gru 22:23
Mila:
Jeżeli piszesz zadanie, to całe.
a) Masz dwie możliwości: liczba 17 i 71
b)
Ile jest liczb dwucyfrowych w których zapisie występuje cyfra 1 lub cyfra 7.
1*10+1*10+7*2=34
9 gru 22:31
52: Hadasz Zapisz to jakoś normalnie np.
a) jedno polecenie
b) drugie polecenie
itd.
9 gru 22:32
Mila:
Zadanie należy podać, tak jak pisze w książce, a nie własną twórczość. Dotyczy wpisu 22:20.
9 gru 22:33
Hadasz: Przepraszam, będę pamietał na przyszłość.
A skąd się wzięła liczba dwa przy "7*2=34"
9 gru 22:44
Mila:
Na pierwsze miejsce wybieramy cyfry ze zbioru {2,3,4,5,6,8,9} ( bo 1 i 7 już uwzględniona
wcześniej)
Na druga pozycję wybieramy ze zbioru {1,7}.
Można jeszcze innym sposobem, może ktoś poda, albo sam wymyślisz.
9 gru 22:48
Eta:
1 x 1*10
7 x 1*10 razem 20 takich liczb
x 1 9*1
x 7 9*1 razem 18 takich liczb
i odrzucić te co się powtórzyły wyżej : 11, 17, 71, 77 −− cztery takie liczby
odp: 20+18 −4 = 34 takie liczby
9 gru 23:06
Mila:
Właśnie o takim myślałam.
9 gru 23:13
op: Skąd wiemy że liczby 1 i 2 nie mogą się powtarzać w b)?
15 gru 19:43
op: 1 i 7*
15 gru 19:45