| xdx | ||
∫ | ||
| x2−x−2 |
| 1 | 2x − 1 +1/2 | |||
= | ∫ | dx = | ||
| 2 | x2 − x − 2 |
| 1 | 1 | 1 | ||||
= | ln(x2−x−2) + | ∫ | dx | |||
| 2 | 4 | (x−1/2)2 − (3/2)2 |
| xdx | 2x−1−x+1 | x−1 | ||||
∫ | =∫ | dx=ln|x2−x−2|− ∫ | dx | |||
| x2−x−2 | x2−x−2 | x2−x−2 |
| x−1 | 2x−1−x | x | ||||
∫ | =∫ | dx=ln|x2−x−2|−∫ | dx | |||
| x2−x−2 | x2−x−2 | x2−x−2 |
| xdx | x | |||
∫ | =ln|x2−x−2|−(ln|x2−x−2|−∫ | dx) | ||
| x2−x−2 | x2−x−2 |
| dx | 1 | x − a | ||||
... i dalej: ∫ | = | *ln | ||||
| x2 − a2 | 2a | x + a |
| 1 | 2x−1 | 1 | 1 | |||||
poprawka: = | ∫ | dx + | ∫ | dx = ....dalej bez zmian | ||||
| 2 | x2−x−2 | 2 | x2−x−2 |