licznik | |
uzywaj takiego zapisu, bo o 19.19 to same bazgranie | |
mianownik |
1 | ||
S=∑(od n=1 do ∞) | ||
n(n+1)*(n+2) |
1 | 1 | 1 | ||||
∑(od n=1 do ∞) | = | +∑(od n=2 do ∞) | = | |||
n*(n+1) | 2 | n*(n+1) |
1 | 1 | |||
= | +∑(od n=1 do ∞) | = | ||
2 | (n+1)*(n+2) |
1 | n | |||
= | +∑(od n=1 do ∞) | = | ||
2 | n(n+1)*(n+2) |
1 | n+2−2 | |||
= | +∑(od n=1 do ∞) | = | ||
2 | n(n+1)*(n+2) |
1 | 1 | 1 | ||||
= | +∑(od n=1 do ∞)]] | −2∑(od n=1 do ∞) | ⇔ | |||
2 | n*(n+1) | n(n+1)*(n+2) |
1 | 1 | |||
0= | −2∑(od n=1 do ∞) | |||
2 | n(n+1)*(n+2) |
1 | ||
S= | ||
4 |
1 | ||
∑n=1∞xn= | ||
1−x |
1 | 1 | |||
∫0x(1−x)log(1−x)+x dx = | x(3x−2)− | (x−1)2log(1−x) | ||
4 | 2 |
1 | 1 | |||
x=1 to | x(3x−2)− | (x−1)2log(1−x)=1/4 | ||
4 | 2 |
1 | 1 | 1 | 1 | ||||
= | *[ | − | ] | ||||
n*(n+1)*(n+2) | 2 | n*(n+1) | (n+1)*(n+2) |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |