| n(n+1)(2n+1) | ||
12+22+...+n2= | ||
| 6 |
| 6 | ||
dla n=1 L=1 , P= | =1 | |
| 6 |
| k(k+1)(2k+1) | ||
dla n= k 11+22+....+k2= | ||
| 6 |
| (k+1)(k+2)(2k+3) | ||
dla n= k+1 12+22+...+k2+(k+1)2 = | ||
| 6 |
| k(k+1)(2k+1) | k(k+1)(2k+1)+6(k+1)2 | |||
L=12+22+..+k2+(k+1)2= | +(k+1)2= | = | ||
| 6 | 6 |
| (k+1)[k(2k+1)+6(k+1)] | (k+1)(2k2+7k+6) | (k+1)(k+2)(2k+3) | ||||
= | = | = | =P | |||
| 6 | 6 | 6 |
| 1*2*3 | ||
12 = | ok | |
| 6 |
| n*(n +1)*(2 n +1) | ||
( 12 + 22 + ... + n2) + (n +1)2 = | + ( n + 1)2 = | |
| 6 |
| n*(n +1)*( 2 n +1) | 6 (n +1)*(n +1) | |||
= | + | = | ||
| 6 | 6 |
| ( n +1) | n +1 | |||
= | *( n*(2 n +1) + 6 ( n +1)} = | *(2 n2 + n + 6 n + 6)} = | ||
| 6 | 6 |
| n +1 | n +1 | |||
= | *(2 n2 + 7 n + 6) = | *( 2 n2 + 4 n + 3 n + 6)} = | ||
| 6 | 6 |
| n +1 | n +1 | |||
= | *( ( n +2)*(2 n + 3)} = | *( n +2)*( 2*( n +1) +1)} = | ||
| 6 | 6 |
| ( n +1)*( n +2)*[ 2*(n +1) + 1] | ||
= | ||
| 6 |
i .......ni be , ni me ... ni pocałuj ....
| 1*2*3 | ||
P= | =1 | |
| 6 |
| n(n+1)(2n+1) | ||
zał. 12+22+...+n2= | ||
| 6 |
| (n+1)(n+2)(2n+3) | ||
12+22...+n2+(n+1)2= | ||
| 6 |
| n(n+1)(2n+1) | ||
L= | +(n+1)2= | |
| 6 |
| n(2n+1) | 2n2+n+6n+6 | (n+1)(n+2)(2n+3) | ||||
=(n+1)( | +n+1)=(n+1)( | )= | =P | |||
| 6 | 6 | 6 |