| 3 | 2n+1−1 | |||
a) limn −> ∞ ( | )n | |||
| 2 | 3n+1−1 |
| (−1)n−7 | ||
b) limn −> ∞ | ||
| en |
| π+(−1)n | ||
c) limn −> ∞ | ||
| √en+7πn |
| 3n | 2n+1 −1 | 2*6n − 3n | ||||
an = | * | = | = | |||
| 2n | 3n+1 − 1 | 3*6n − 2n |
| |||||||||||
= | |||||||||||
|
| 2 − 0 | 2 | |||
lim an = | = | |||
| 3 − 0 | 3 |
| −8 | (−1)n − 7 | −6 | ||||
≤ | ≤ | |||||
| en | en | en |
| −8 | − 6 | |||
lim | = 0 i lim | = 0 | ||
| en | en |
| (−1)n − 7 | ||
lim | = 0 | |
| en |