matematykaszkolna.pl
dla jakich wartości a równanie Justin: proszę o pomooooooc dla jakich wartości a równanie |9−x2|=a ma dokłanie trzy rozwiązania?
3 gru 10:56
J: szkicujesz wykres f(x) = I9−x2I ... potem przesuwasz prostą: y = a i patrzysz,kiedy przecina wykres dokładnie w trzech punktach
3 gru 11:00
J: Odp: a = 9
3 gru 11:02
Justin: Babka nam powiedziała, że nie możemy tego robić graficznie. Dlatego leże i kwicze.
3 gru 11:02
ZKS: |9 − x2| = a Założenie a ≥ 0. x4 − 18x2 + 81 − a2 = 0 Niech x2 = t ≥ 0. t2 − 18t + 81 − a = 0 t1 + t2 > 0 ⇒ 18 > 0 ⇒ a ∊ R t1t2 = 0 ⇒ 81 − a2 = 0 ⇒ a = ±9 Zbieramy wszystkie warunki razem i dostajemy a = 9.
3 gru 11:16
J: założenie: a ≥ 0 ⇔ [ 9 − x2 = a lub 9 − x2 = − a ] ⇔ [ x2 = 9 − a lub x2 = 9 + a ] aby istniały dokładnie trzy rozwiazania, to albo : 9 + a = 0 ⇔ a = − 9 (odpada) albo : 9 − a = 0 ⇔ a = 9
3 gru 11:18
Justin: dziękuję !
3 gru 11:24