| x | ||
Rozwiąż równanie: 2 cos x + 3 = 4 cos | ||
| 2 |
2( 2cos2x2 −1)+3 − 4cosx2=0
4cos2x2 −2 +3−4cosx2=0
4t2 −4t +1=0
( 2t −1)2=0 => 2t=1
to t= 12
zatem: cosx2 = 12
to; x2= π3+k*2π lub x2= −π3+k*2π , k€ C
| 2π | −2π | |||
x = | +k*4π lub x = | +k*4π , k€C
| ||
| 3 | 3 |