4(1−a) | ||
Wykaż, że jeśli log246=a to log6256= | ||
a |
log66 | 1 | |||
log246= | = | = | ||
log624 | log6(6*4) |
1 | 1 | 1 | |||
= | = | =a | |||
log66+log64 | 1+log622 | 1+2log62 |
1−a | ||
log62= | ||
2a |
1−a | 4(1−a) | |||
♠=8• | = | |||
2a | a |
1 | 1 | 1−a | ||||
log246=a ⇒ | =a ⇒ | =a ⇒ log64= | ||||
log624 | 1+log64 | a |
1−a | 4(1−a) | |||
log6256= 4log64 = 4* | = | |||
a | a |