| 1 | 1 | |||
f(x)= 1 + | + ( | )2 +...
| ||
| x | x |
| 1 | 1 | |||
f(x) = 1 + | + | + ... /*x, x∉{0} | ||
| x | x2 |
| 1 | 1 | |||
x*f(x) = x + 1 + | + | + ... | ||
| x | x2 |
| x | ||
f(x) = | ||
| x−1 |
| (x−1)+1 | ||
f(x) = | ||
| x−1 |
| 1 | 1 | |||
f(x) = 1 + | , czyli wykres f(x) = | przesunięty o wektor [1,1] | ||
| x−1 | x |
| 1 | 1 | |||
f(x)=1+ | + | +.... | ||
| x | x2 |
| 1 | ||
a1= | ||
| x |
| 1 | ||
q= | ||
| x |
| |||||||||||
S= | |||||||||||
|
| 1 | ||
| | |<1 | |
| x |
| ||||||||
S= | ||||||||
|
| 1 | |
<1 | |
| x |
| 1 | |
>−1 | |
| x |
| 1 | ||
S= | ||
| x−1 |
| 1 | ||
f(x)=1+ | ||
| x−1 |
| 1 | 1 | |||
| | |<1 → x ∊ (−∞, −1) ∪ (1, ∞) → f(x) ∊ ( | , 1) ∪ (1, ∞) | ||
| x | 2 |
| 1 | 1 | 1 | 1 | 1 | 1−x | 1+x | ||||||||
| | |<1 → ( | <1 ∧ | >−1)→ ( | −1<0 ∧ | +1>0)→( | <0 ∧ | >0) | |||||||
| x | x | x | x | x | x | x |

| 1 | ||
Nie zgadzam się: | | | < 1 czyli inaczej |x| >1, x>1∪ x<−1 → x ∊ (−∞, −1) ∪ (1, ∞), | |
| x |
| 1 | ||
a teraz wykres f(x) = 1 + | (troszkę pokraczny rys. powyżej; punkt A[1,1]; | |
| x−1 |
| 1 | ||
B[−1, | ]) | |
| 2 |
| 1 | ||
Dla x ∊ (−∞, −1) → f(x) ∊ ( | , 1), lewa część wykresu | |
| 2 |
| 1 | ||
f(x) ∊ ( | ,1) ∪ (1,∞) | |
| 2 |
| 1 | ||
Podstaw sobie jakąś z wartość z tego przedziału do wzoru funkcji: f( | ) = 1 + | |
| 2 |
| 1 | ||||||||
= −1, a przecież −1 ∉ (0,1). | ||||||||
|