sinx | ||
Niech f(x)= | , dla x>0 oraz n będzie dodatnią liczbą naturalną. Udowodnij, że | |
x |
1 | ||
|f(n)(x)|< | , | |
n+1 |
sinx | ||
f(x) = | ||
x |
xcosx − sinx | cosx | sinx | ||||
f'(x) = | = | − | ||||
x2 | x | x2 |
− xsinx − cosx | x2cosx − 2xsinx | |||
f''(x) = | − | = | ||
x2 | x4 |
sinx | cosx | cosx | 2sinx | |||||
= − | − | − | − | = | ||||
x | x2 | x2 | x3 |
sinx | 2cosx | 2sinx | ||||
= − | − | − | ||||
x | x2 | x3 |
cosx | sinx | −2x2sinx−4xcosx | 2x3cosx−6x2sinx | |||||
f'''(x) = − | + | − | − | = | ||||
x | x2 | x4 | x6 |
cosx | sinx | 2sinx | 4cosx | |||||
= − | + | + | + | − | ||||
x | x2 | x2 | x3 |
2cosx | 6sinx | cosx | 3sinx | 6cosx | 6sinx | ||||||
+ | = − | + | + | + | |||||||
x3 | x4 | x | x2 | x3 | x4 |
n!sin(x) |
| |||||||||
f(n)(x) = (−1)n | + (−1)n+1 | + | ||||||||
xn+1 | xn |
|
| |||||||||||||||
(−1)n+1 | + (−1)n | + | ||||||||||||||
xn−1 | xn−2 |
|
| ||||||||||||||||||
+ (−1)n | + ... + | ||||||||||||||||||
xn−3 | x |
sinx | 1 | |||
f(n)(x) = ( | )(n) = (sinx * | )(n) = | ||
x | x |
| 1 | |||||||||
= ∑k=0n | (sinx)(k) * ( | )(n−k) = | ||||||||
x |
| kπ | (−1)n−k (n−k)! | ||||||||||
= ∑k=0n | sin(x + | ) * | ||||||||||
2 | xn−k+1 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |