| z | |
= | |
| (z2−1)2 |
| 1+j | 1−j | 1+j | 1−j | |||||
(z2+2z+2)2=[( | )( | )]2=( | )2( | )2 | ||||
| 2 | 2 | 2 | 2 |
| π | ||
φ= | ||
| 2 |
| π | π | √2 | √2 | |||||
z0=√2*(cos | +i* sin | )=√2*( | +i * | )=1+i | ||||
| 4 | 4 | 2 | 2 |
| π2+2π | π2+2π | 5π | 5π | |||||
z1=√2*(cos | +i* sin | )=(cos | +i* sin | })= | ||||
| 2 | 2 | 4 | 4 |
| 3π | ||
φ= | ||
| 2 |
| 3π2 | 3π2 | |||
zk=√2*(cos( | +2kπ)+i sin( | ) dla k∊{0,1} | ||
| 2 | 2 |
| −2−2i | ||
z= | =(−1−i) lub z=−1+i | |
| 2 |