n+7 | ||
Oblicz granicę ciągu ( | )3n+1 | |
n+9 |
2 | 3n+1 | |||
= lim [(1 − | )n]K , gdzie: K = | i lim K = 3 | ||
n+9 | n |
3n+1 | ||
pomyłka ... K = | i lim K = 3 | |
n + 9 |
2 | ||
= lim[(1 − | )n+9]K | |
n+9 |
n+1 | n(1+1n) | |||
lim ( | )n=( | n=1n=1 | ||
2n+5 | n(2+5n) |
1 | ||
Nie, bo lim n→∞(1+ | )n=e | |
n |
1 | n+1 | |||
= lim( | )n*( | )n = 0 | ||
2 | n+5/2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |