| ax2+b | ||
funkcja f(x)= | ma extremum w punkcie x=0, wyznacz a i b wiedząc, że | |
| (2−x)2 |
| a x2 + b | ||
f(x) = | ; x ≠ 2 | |
| ( 2 − x)2 |
| a x2 + b | a + bx2 | |||
f(x) = | = | |||
| 4 − 4 x + x2 | 4x2 − 4x + 1 |
| a + 0 | ||
lim f(x) = | = a = 2 | |
| 0 − 0 + 1 |
| 2 x2 + b | ||
f(x) = | ||
| x2 − 4 x + 4 |
| 4 x*( x2 − 4 x + 4) − (2 x2 + b)*( 2 x − 4) | ||
f '(x) = | = | |
| ( 2 − x)4 |
| 4 x3 − 16 x2 + 16 x − 4 x3 + 8 x2 −2b x + 4 b | ||
= | = | |
| ( 2 − x)4 |
| − 8 x2 + ( 16 − 2b) x + 4b | ||
= | ||
| (2 − x)4 |
| 0 + 0 + 4 b | ||
f '(0) = | = 0 ⇒ b = 0 | |
| 16 |
| 2 x2 | ||
f(x) = | ||
| ( 2 − x)2 |