| f(x+Δx)−f(x) | (x+Δx)3+√x+Δx−x3−√x | |||
limΔx→0 | = limΔx→0 | = | ||
| Δx | Δx |
| x3+3x2Δx+3xΔx2+Δx3+√x+Δx−x3−√x | ||
limΔx→0 | = | |
| Δx |
| 3x2Δx+3xΔx2+Δx3+√x+Δx−√x | ||
limΔx→0 | ||
| Δx |
| a2−b2 | ||
a−b= | ||
| a+b |
| |||||||||||
limΔx→0 | = | ||||||||||
| Δx |
| 1 | 1 | |||
limΔx→0 3x2+3xΔx+Δx2+ | =3x2+ | |||
| √x+Δx+√x | 2√x |
| 1 | ||
trzeba dać nawiasy na ostania linijke, gdzie jest limes (....+ | ) | |
| √x+Δx+√x |