| 1 | ||
log4916 = | log724 = 2log72 | |
| 2 |
| 1 | 1 | |||
a = log142 + log1414 = | + 1 = | + 1 | ||
| log214 | log22 + log27 |
| 2 | ||
2log72 = | .... z drugiego równania oblicz: log27 i podstaw | |
| log27 |
| log728 | log7(7*4) | 1+2log72 | ||||
a=log1428= | = | = | ||||
| log714 | log7(7*2) | 1+log72 |
| log716 | ||
log4916= | = | |
| log749 |
| 2(a−1) | ||
chyba wychodzi: | ||
| 2 − a |