| x | |
| 1−x2 |
| x2+1 | |
| (1+x2)2 |
| [x'*(1−x2)]−[x*(1−x2)' | |
| (1−x2)2 |
licznik :
zostanie x2+1
mianownik :
(1−x2)2
| d | x | 1 + x2 | ||
= | ||||
| dx | 1−x2 | 1 − x2 |
| ||||||||||||||
limΔx→0 | ||||||||||||||
| Δx |
| 1 | x+Δx | x | ||||
limΔx→0 | ( | − | ) | |||
| Δx | 1−(x+Δx)2 | 1−x2 |
| 1 | (x+Δx)(1−x2)−x(1−(x+Δx)2) | |||
limΔx→0 | ( | ) | ||
| Δx | (1−(x+Δx)2)(1−x2) |
| 1 | x−x3+Δx−x2Δx−x+x(x2+2xΔx+(Δx)2)) | |||
limΔx→0 | ( | ) | ||
| Δx | (1−(x+Δx)2)(1−x2) |
| 1 | x−x3+Δx−x2Δx−x+x3+2x2Δx+x(Δx)2) | |||
limΔx→0 | ( | ) | ||
| Δx | (1−(x+Δx)2)(1−x2) |
| 1 | Δx+x2Δx+x(Δx)2) | |||
limΔx→0 | ( | ) | ||
| Δx | (1−(x+Δx)2)(1−x2) |
| 1 | Δx(1+x2+xΔx) | |||
limΔx→0 | ( | ) | ||
| Δx | (1−(x+Δx)2)(1−x2) |
| (1+x2+xΔx) | ||
limΔx→0( | ) | |
| (1−(x+Δx)2)(1−x2) |
| 1+x2 | ||
= | ||
| (1−x2)2 |