| π | π | π | π | |||||
cos(x+ | )=sin( | −(x+ | )=sin( | −x) | ||||
| 3 | 2 | 3 | 6 |
| π | ||
sin2x−sin( | −x)=0 | |
| 6 |
| 2x+(pi/6−x) | 2x−(pi/6−x) | |||
2cos | *sin | =0 | ||
| 2 | 2 |
| x+pi/6 | 3x−pi/6 | |||
2cos | *sin | =0 | ||
| 2 | 2 |
| x | π | 3 | π | |||||
2cos( | + | )*sin( | x− | )=0 | ||||
| 2 | 12 | 2 | 12 |
| x | π | 3 | π | |||||
a) 2cos( | + | )=0 lub b) sin( | x− | )=0 | ||||
| 2 | 12 | 2 | 12 |
| x | π | |||
a) cos | + | )=0 | ||
| 2 | 12 |
| x | π | π | |||
+ | = | +kπ k∊C | |||
| 2 | 12 | 2 |
| x | π | π | |||
= | − | +kπ | |||
| 2 | 2 | 12 |
| x | 5π | ||
= | +kπ | ||
| 2 | 12 |
| 10π | 5 | |||
x= | +2kπ= | π+2kπ | ||
| 12 | 6 |
| 3 | π | |||
sin( | x− | )=0 | ||
| 2 | 12 |
| 3 | π | ||
x− | =kπ i k∊C | ||
| 2 | 12 |
| 3 | π | ||
x=kπ+ | |||
| 2 | 12 |
| 1 | 2 | |||
x= | π+ | kπ | ||
| 18 | 3 |
sin(2x)= cos(π2−2x)
i mamy:
cos(π2−2x)=cos(x+π3)
π2−2x=x+π3+2kπ v π2−2x=−x−π3+2kπ
| 5 | ||
3x=π6+2kπ v x= | π+2kπ | |
| 6 |
| π | 2 | |||
x= | + | kπ k ∊ℤ | ||
| 18 | 3 |
| 5 | ||
3x=π6=2kπ v x= | π+2kπ | |
| 6 |
| π | 2 | |||
x= | + | kπ , k∊ℤ | ||
| 18 | 3 |
Pierwszym moim pomysłem było zamienić sin(2x) na cosinus.
Czyli stare powiedzenie się sprawdza. Pierwszy najlepszy