| 1 | ||
∀ε>0∃N∊ℕ∀n>N |(− | )n|<ε | |
| 2 |
| 1 | ||
|(− | )n|<ε | |
| 2 |
| 1 | |
<ε | |
| 2n |
| 1 | |
<2n | |
| ε |
| 1 | ||
n>log2 | ||
| ε |
| 1 | ||
Żeby to było spełnione wystarczy, by: N=[log2 | ] +1 | |
| ε |
| 1 | 1 | |||
∀ε>0∃N∊ℕ∀n>m>N |(− | )n−(− | )m|<ε | ||
| 2 | 2 |
| 1 | 1 | 1 | 1 | |||||
|(− | )n−(− | )m|≤|(− | )n|−|(− | )m|= | ||||
| 2 | 2 | 2 | 2 |
| 1 | 1 | 1 | 1 | |||||
= | )n− | )m= | (U{1}{2n−m−1)≤ | |||||
| 2 | 2 | 2m | 2m |
| 1 | 1 | 1 | ||||
∀ε>0∃N∊ℕ∀n>m>N |(− | )n−(− | )m|≤ | <ε | |||
| 2 | 2 | 2m |
| 1 | |
<ε | |
| 2m |
| 1 | ||
Tak jak w sposobie 1., weźmy N=[log2 | ]+1 | |
| ε |