oblicz granicę ciągów
czesiek: oblicz granicę ciągów
9*2−n2cos(pi n )
9 lis 20:04
Mila:
limn→∞9*2n2cos(πn) czy taka?
limn→∞9*2−n2cos(πn) czy jeszcze inna, sprawdzaj zapis w podglądzie zanim napiszesz.
9 lis 20:08
czesiek: ta druga
9 lis 20:11
Mila:
| | 1 | | 1 | |
=limn→∞ [9*cos(πn)]* |
| =0 bo |
| →0 a ciąg cos(πn) jest ograniczony. |
| | 2n2 | | 2n2 | |
9 lis 20:33
czesiek: czyli granica równa się 0 bo 1/2n2 = 0 a tamtego z cosinusami wgl nie ruszam?
9 lis 21:02
Mila:
Tak, jest twierdzenie, że jeżeli :
a
n− ciąg ograniczony i b
n→0 to:
lim
n→∞(a
n*b
n)=0
| | 1 | |
Masz tam |cos(nπ)|≤1 ,natomiast |
| →0 |
| | 2n2 | |
9 lis 21:33