ln(n2+n+8 | ||
lim | ||
ln(n7+2n−1) |
ln(n2) + ln(1+1/n + 8/n2) | ||
an = | = | |
ln(n7) + ln(1 + 2/n6 − 1/n7) |
2ln(n) + ln(1+1/n + 8/n2) | ||
= | = | |
7ln(n) + ln(1 + 2/n6 − 1/n7) |
2 + ln(1+1/n + 8/n2) / ln(n) | ||
= | ||
7 + ln(1 + 2/n6 − 1/n7)/ ln(n) |
ln(1 + 1/n + 8/n2 | ||
bn = | → 0 ,podobnie cn =ln(1 + 2/n6 − 1/n7)/ ln(n) → 0 | |
ln(n) |