π | ||
arcsin(x)+arcsin(2x)= | ||
2 |
1 | 1 | |||
−1≤x≤1 i −1≤2x≤1⇔− | ≤x≤ | |||
2 | 2 |
π | ||
arcsin(x)+arcsin(2x)= | ||
2 |
π | ||
sin(arcsin(x)+arcsin(2x))=sin | ⇔ | |
2 |
π | π | |||
arcsin(x)=α i α∊<− | , | >⇔sin(arcsin(x))=sinα⇔x=sinα | ||
2 | 2 |
π | π | |||
arcsin(2x)=β i β∊<− | , | >⇔sin(arcsin(2x))=sinβ ⇔2x=sinβ⇔ | ||
2 | 2 |
1 | ||
sinα= | sinβ | |
2 |
π | π | |||
α+β= | ⇔β= | −α | ||
2 | 2 |
1 | π | |||
sinα= | sin( | −α) | ||
2 | 2 |
1 | ||
sinα= | cosα⇔cosα=2sinα | |
2 |
1 | ||
sin2α= | ||
5 |
1 | ||
sinα= | ||
√5 |