1 − cos2x | ||
sin2x = | ||
2 |
1 | 1 | |||
sin2x= | − | cos2x | ||
2 | 2 |
1 | 1 | |||
∫xsin2xdx= | xdx− | ∫xcos2xdx= | ||
2 | 2 |
1 | 1 | |||
= | x2dx− | ∫xcos2xdx | ||
4 | 2 |
1 | ||
∫xcos2xdx=|u=x u'=1 v'=cos2x v= | sin2x| | |
2 |
1 | 1 | 1 | 1 | |||||
= | xsin2x− | ∫sin2xdx= | xsin2x+ | cos2x+C | ||||
2 | 2 | 2 | 4 |
1 | 1 | 1 | ||||
∫xsin2xdx= | x2− | xsin2x− | cos2x+C | |||
4 | 4 | 8 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |