| 1 | 1 | 1 | 1 | 1 | 1 | |||||||
2((x+ | )− | )3)+((x+ | )− | )2+(x+ | )− | )−1=0 | ||||||
| 6 | 6 | 6 | 6 | 6 | 6 |
| 1 | 1 | 1 | 1 | 1 | 1 | |||||||
2((x+ | )3− | (x+ | )2+ | (x+ | )− | )+ | ||||||
| 6 | 2 | 6 | 12 | 6 | 216 |
| 1 | 1 | 1 | 1 | 1 | 1 | |||||||
(x+ | )2− | (x+ | )+ | +(x+ | )− | −1=0 | ||||||
| 6 | 3 | 6 | 36 | 6 | 6 |
| 1 | 1 | 1 | 1 | 1 | ||||||
2(x+ | )3−(x+ | )2+ | (x+ | )− | + | |||||
| 6 | 6 | 6 | 6 | 108 |
| 1 | 1 | 1 | 1 | 1 | 1 | |||||||
(x+ | )2− | (x+ | )+ | +(x+ | )− | −1=0 | ||||||
| 6 | 3 | 6 | 36 | 6 | 6 |
| 1 | 1 | 1 | −1+3−18−108 | |||||
2(x+ | )3− | (x+ | )+ | =0 | ||||
| 6 | 6 | 6 | 108 |
| 1 | 1 | 1 | −31 | |||||
(x+ | )3− | (x+ | )+ | =0 | ||||
| 6 | 12 | 6 | 54 |
| 1 | 31 | |||
y3− | y− | =0 | ||
| 12 | 54 |
| 1 | 31 | |||
(u+v)3− | (u+v)− | =0 | ||
| 12 | 54 |
| 1 | 31 | |||
u3+3u2v+3uv2+v3− | (u+v)− | =0 | ||
| 12 | 54 |
| 31 | 1 | |||
u3+v3− | +3(u+v)(uv− | )=0 | ||
| 54 | 36 |
| 31 | ||
u3+v3− | =0 | |
| 54 |
| 1 | ||
3(u+v)(uv− | )=0 | |
| 36 |
| 31 | ||
u3+v3= | ||
| 54 |
| 1 | ||
uv− | =0 | |
| 36 |
| 31 | ||
u3+v3= | ||
| 54 |
| 1 | ||
uv= | ||
| 36 |
| 31 | ||
u3+v3= | ||
| 54 |
| 1 | ||
u3v3= | ||
| 46656 |
| 31 | 1 | |||
t2− | t+ | =0 | ||
| 54 | 46656 |
| 31 | 961 | 1 | ||||
(t− | )2− | + | ||||
| 108 | 11664 | 46656 |
| 62 | 3843 | |||
(t− | )2− | =0 | ||
| 216 | 46656 |
| 62−√3843 | 62+√3843 | |||
(t− | )(t− | )=0 | ||
| 216 | 216 |
| 1 | 1 | |||
y= | 3√62−√3843+ | 3√62+√3843 | ||
| 6 | 6 |
| 1 | 1 | |||
x+ | = | 3√62−√3843+3√62+√3843 | ||
| 6 | 6 |
| 1 | ||
x= | (3√62−√3843+3√62+√3843−1) | |
| 6 |