(n2+3n−1)*(√n+√n−√n−√n) | ||
an= | ||
−2n2+n |
n+√n−n+√n | 2√n | |||
bn= √n+√n−√n−√n= | = | |||
√n+√n+√n−√n | √n+√n+√n−√n |
(n2+3n−1)*(2√n) | ||
an= | = | |
(−2n2+n)*(√n+√n+√n−√n) |
| |||||||||||||||||
= | = | ||||||||||||||||
|
2√n | |
= dzielimy licznik i mianownik przez √n | |
√n+√n+√n−√n |
2 | 2 | |||
= | → | =1⇔ | ||
√1+(1/√n)+√1+(1/√n) | 2 |
−1 | ||
an→ | ||
2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |