| π | ||
sin(4x)−cos(4x)=−√2cos( | +4x) | |
| 4 |
| π | π | |||
−√2cos( | +4x)=−√2cos( | +x) / : (−√2) | ||
| 4 | 4 |
| π | π | |||
cos( | +4x)=cos( | +x) | ||
| 4 | 4 |
| π | π | ||
+4x= | +x+2kπ k∊C | ||
| 4 | 4 |
| π | π | |||
4x−x= | − | +2kπ | ||
| 4 | 4 |
| 2 | ||
x= | kπ i k∊C | |
| 3 |
| π | π | ||
+4x=−( | +x)+2kπ i k∊C | ||
| 4 | 4 |
| π | ||
4x+x=−2 | +2kπ | |
| 4 |
| 1 | ||
5x=− | π+2kπ | |
| 2 |
| 1 | 2 | |||
x=− | π+ | kπ i k∊C | ||
| 10 | 5 |