macierze
aaa: Macierze, jak to uprościć?
Próbowałam na wszystkie sposoby, ale po uproszczeniu i obliczeniu złe wyniki wychodzą. Proszę o
pomoc.
| −1 x −2 x |
| 0 2 2x −2 | =32
| −2 2 −1 x+2 |
| x−3 0 −2 0 |
np. w3−w2 i wtedy liczyłam
24 paź 19:27
sushi_gg6397228:
to zapisz swoje obliczenia
dla mnie są dwa "0" w 4 wierszu, więc to bym rozwijał
24 paź 19:32
aaa: już piszę
chwila...
24 paź 19:36
aaa:
|x −2 x | |−1 x x |
−(x−3)* |2 2x −2 |−2* | 0 2 −2 | =(−x+3)(2x3+16)−2(−10x−8)=−2x4+6x3−16x+48+20x+16=
|2 −1 x+2| | 2 2 x+2|
=−2x4+6x3−6x+64
24 paź 19:45
aaa: co źle jest?
24 paź 19:50
sushi_gg6397228:
2−gi wyznacznik w 3 wierszu ma byc −2 2 x+2 oraz (−1)4+3* (−2)=...
24 paź 19:55
aaa: czyli wychodzi −2x4+6x3−16x+48+12x−16=−2x4+6x3−4x+32
−2x4+6x3−4x+32=32
−2x4+6x3−4x=0
24 paź 20:05
aaa: coś źle
24 paź 20:07
sushi_gg6397228:
a dalej to już z górki
24 paź 20:08
aaa: serio to jest dobrze?
24 paź 20:10
sushi_gg6397228:
mi też tak wyszlo
24 paź 20:11
aaa: a wyniki mają byc takie: −√3+1, √3+1, 0, 1 no i nie wiem...
24 paź 20:12
aaa: Jak się rozwiązuje takie równanie jak wyszło?
24 paź 20:13
sushi_gg6397228:
dzielisz przez "−2", potem "x" przed nawias
widać że x=1 jest pierwiastiem wielomianu ( sprawdzasz pod tw Bezout'a )
24 paź 20:13
aaa: x(x3−3x2+2)=0
24 paź 20:22
sushi_gg6397228:
teraz czytasz drugą linijkę mojego postu o 20.13 i stosujesz dla swojego nawiasu
24 paź 20:25
aaa: w(1)=0
(x3−3x2+2):(x−1)=0
24 paź 20:27
sushi_gg6397228:
skąd "0" w drugiej linijce po prawej stronie
dzielisz pisemnie lub Hornerem
24 paź 20:29
aaa: czyli hornerem wyjdzie
x2−2x−2=0
24 paź 20:30
sushi_gg6397228:
dalej Δ, x1, x2
24 paź 20:31
aaa: i x=1−√3 i x=1+√3
24 paź 20:32
aaa: ok, dziekuję. a to "0" co miało być w wynikach to skąd?
24 paź 20:33
aaa: ok, już chyba widzę, bo tam był x przed nawiasem.
a 1, to sobie szukam?
24 paź 20:34
aaa: szukam i widzę, że 1 jest pierwiastkiem wielomianu?
24 paź 20:34
sushi_gg6397228:
masz wielomian 3 stopnia, więc szukamy sami we własnym zakresie dzielniki wyrazu wolnego , itp
można też x3−2x2− x2+2 i pogrupować 1z3 i 2z4
24 paź 20:38
aaa: aaa ok, przepraszam, miałam to w liceum dawno i szybko zapomniałam. Dziękuję za pomoc!
24 paź 20:55
sushi_gg6397228:
na zdrowie
24 paź 20:56