√4x2 − x | √x2√4 − 1/x | |||
a1 = limx→∞ | = limx→∞ | = | ||
x | x |
|x|√4 − 1/x | x√4 − 1/x | |||
= limx→∞ | = limx→∞ | = | ||
x | x |
4x2 − x − 4x2 | ||
b1 = limx→∞(√4x2 − x − 2x) = limx→∞ | = | |
√4x2 − x + 2x |
− x | −1 | −1 | ||||
= limx→∞ | = limx→∞ | = | = | |||
x(√4 − 1/x + 2) | √4 − 1/x + 2 | √4+2 |
1 | ||
− | ||
4 |
√4x2 − x | √x2√4 − 1/x | |||
a2 = limx→−∞ | = limx→−∞ | = | ||
x | x |
|x|√4 − 1/x | −x√4 − 1/x | |||
= limx→−∞ | = limx→−∞ | = | ||
x | x |
4x2 − x − 4x2 | ||
b2 = limx→∞(√4x2 − x + 2x) = limx→∞ | = | |
√4x2 − x − 2x |
− x | 1 | 1 | 1 | |||||
= limx→∞ | = limx→∞ | = | = | |||||
−x(√4 − 1/x + 2) | √4 − 1/x + 2 | √4+2 | 4 |
1 | 1 | |||
y = 2x − | oraz y = −2x + | |||
4 | 4 |