√n+4−√n | ||
=√n+4−√n= | *(√n+4+√n) | |
√n+4+√n |
(n+4)−n | ||
= | ||
√n+4+√n |
4 | ||
= | →0 | |
√n+4+√n |
√n+4−√n | √n+4+√n | |||
limn→∞ | * | = | ||
1 | √n+4+√n |
n+4−n | ||
=limn→∞ | = | |
√n+4+√n |
4 | ||
=limn→∞ | =0 | |
√n+4+√n |
√3n2+2n−5−2n | √3n2+2n−5+2n | |||
limn→∞ | * | = | ||
1 | √3n2+2n−5+2n |
3n2+2n−5−4n2 | ||
=limn→∞ | }= | |
√3n2+2n−5+2n |
−n2+2n−5 | ||
=limn→∞ | = | |
√3n2+2n−5+2n |
n*(−n+2−5n2) | ||
=limn→∞ | = | |
n*(√3+2n−5n2+2) |
(−n+2−5n2) | ||
=limn→∞ | =−∞ | |
(√3+2n−5n2+2) |