| √n+4−√n | ||
=√n+4−√n= | *(√n+4+√n) | |
| √n+4+√n |
| (n+4)−n | ||
= | ||
| √n+4+√n |
| 4 | ||
= | →0 | |
| √n+4+√n |
| √n+4−√n | √n+4+√n | |||
limn→∞ | * | = | ||
| 1 | √n+4+√n |
| n+4−n | ||
=limn→∞ | = | |
| √n+4+√n |
| 4 | ||
=limn→∞ | =0 | |
| √n+4+√n |
| √3n2+2n−5−2n | √3n2+2n−5+2n | |||
limn→∞ | * | = | ||
| 1 | √3n2+2n−5+2n |
| 3n2+2n−5−4n2 | ||
=limn→∞ | }= | |
| √3n2+2n−5+2n |
| −n2+2n−5 | ||
=limn→∞ | = | |
| √3n2+2n−5+2n |
| n*(−n+2−5n2) | ||
=limn→∞ | = | |
| n*(√3+2n−5n2+2) |
| (−n+2−5n2) | ||
=limn→∞ | =−∞ | |
| (√3+2n−5n2+2) |