3 | 2n+1−1 | |||
1) | n * | |||
2 | 3n+1−1 |
3√n2 * cos n! | ||
2) | ||
n+1 |
2n+ (−1)n | ||
3) | ||
n |
3 | 2n+1 − 1 | 3n | 2*2n − 1 | |||||
1) an = ( | )n* | = | * | = | ||||
2 | 3n+1 − 1 | 2n | 3*3n − 1 |
3n* 2*2n − 3n | 2 − (12)n | |||
= | = | ; podzieliłem | ||
2n*3*3n − 2n | 3 − (13)n |
2 − 0 | 2 | |||
lim an = | = | |||
3 − 0 | 3 |
3√n2 | 3√n2 | |||
− | ≤ an ≤ | |||
n + 1 | n + 1 |
3√1n | 3√1n | |||
− | ≤ an ≤ | |||
1 + 1n | 1 + 1n |
2 n + (− 1)n | ||
3) an = | ||
n |
2n − 1 | 2n + 1 | ||
≤ an ≤ | |||
n | n |
1 | 1 | |||
2 − | ≤ an ≤ 2 + | |||
n | n |
1 | 1 | |||
lim an = 2 bo lim ( 2 − | ) = 0 i lim ( 2 + | ) = 0 | ||
n | n |
1 | ||
lim ( 2 − | ) = 2 | |
n |