| 1 | ||
Kąt α jest ostry i sin α = | . Oblicz 3+tg2 α | |
| 4 |
| 1 | ||
( | )2 + cos2α = 1 | |
| 4 |
| 1 | ||
cos2α = 1 − | ||
| 16 |
| 15 | ||
cos2α = | ||
| 16 |
| 15 | √15 | √15 | ||||
cosα = √ | − | = | ||||
| 16 | √16 | 4 |
| 1 | 4 | 1 | √15 | ||||||||||||
tgα = | = | * | = | * | = | |||||||||||
| 4 | √15 | √15 | √15 |
| √15 | ||
= | ||
| 15 |
| √15 | 15 | 1 | 1 | |||||
3+tg2α = 3+( | )2 = 3+ | = 3+ | = 3 | |||||
| 15 | 225 | 15 | 15 |
| 1 | ||
Wiedząc, że tgα = | , oblicz wartośćwyrażenia 5(2sin2α − 1) | |
| 3 |
| 1 | ||
tgα = | ||
| 3 |
| sinα | ||
tgα= | ||
| cosα |
| sinα | 1 | ||
= | /cosα | ||
| cosα | 3 |
| 1 | ||
sinα= | cosα | |
| 3 |
| 1 | ||
( | cosα)2 + cos2α=1 | |
| 3 |
| 1 | |
cos2α + cos2α = 1 | |
| 9 |
| 10 | 9 | ||
cos2α=1 / * | |||
| 9 | 10 |
| 9 | ||
cos2α = | ||
| 10 |
| 9 | √9 | 3 | √10 | 3√10 | ||||||
cosα = √ | = | = | * | = | ||||||
| 10 | √10 | √10 | √10 | 10 |
| 1 | ||
sinα = | * cosα | |
| 3 |
| 1 | 3√10 | √10 | ||||
sinα = | * | = | ||||
| 3 | 10 | 10 |
| √10 | 10 | |||
i obliczam: 5(2sin2α − 1) = 5[2*( | )2 − 1] = 5(2 * | − 1)= | ||
| 10 | 100 |
| 2 | 4 | 20 | ||||
= 5( | − 1) = 5 * (− | ) = − | = −4 | |||
| 10 | 5 | 5 |
ale można prościej
bez liczenia pierwiastków;
5( 2sin2a −1) = 5( 2sin2a −sin2a −cos2a)= 5*( sin2a −cos2a)
| 9 | ||
skoro cos2a = | ||
| 10 |
| 1 | ||
to : sin2a= | ||
| 10 |
No tak... stosowałem już
wcześniej takie przekształcenie z 1 na sin2 + cos2, ale jakos nie przyszlo mi to do glowy
....
| cos3α − cosα | |
= tgα | |
| sin3α − sinα |
| cosa(cos2a−1) | cosa | −sin2a | sina | |||||
L= | = | * | = | = tga
| ||||
| sina(sin2a−1) | sina | −cos2a | cosa |