x3−t3 | ||
x' = | jak sie za to zabrać? | |
t*x2 |
t3 | ||
t * x' = x − | / :t | |
x2 |
x | t2 | |||
x' = | − | |||
t | x2 |
x | 1 | ||||||||||||
x' = | − | ||||||||||||
t |
|
x | ||
z = | ||
t |
1 | ||
z + z' * t = z − | ||
z2 |
1 | ||
z' * t = − | ||
z2 |
dz | 1 | ||
* t = − | |||
dt | z2 |
dt | |
=dz * (−z2) // ∫ | |
t |
z3 | ||
ln|t| + C = | ||
3 |
x | |
= 3√3ln|t| + C | |
t |
t | ||
podziel równanie przez x, dostaniesz formę | ||
x |
t | √x2−tx | |||
( | + | ) x' = 1 | ||
x | x |
t | t | |||
( | + √1− | ) x' = 1 | ||
x | x |
t | ||
(s + √1−s ) * (− | ) *s' = 1 | |
s2 |
s2 | ||
s' = | ||
−t(s+√1−s) |
ds | s2 | ||
= | |||
dt | −t(s+√1−s) |
ds(s+√1−s) | dt | ||
= | |||
s2 | −t |
1 | 1 | 1 | dt | |||||
( | + √ | − √ | )ds = | czy to jest dobrze do tego momentu ? | ||||
s | s4 | s3 | −t |