| x3−t3 | ||
x' = | jak sie za to zabrać ? | |
| t*x2 |
| t3 | ||
t * x' = x − | / :t | |
| x2 |
| x | t2 | |||
x' = | − | |||
| t | x2 |
| x | 1 | ||||||||||||
x' = | − | ||||||||||||
| t |
|
| x | ||
z = | ||
| t |
| 1 | ||
z + z' * t = z − | ||
| z2 |
| 1 | ||
z' * t = − | ||
| z2 |
| dz | 1 | ||
* t = − | |||
| dt | z2 |
| dt | |
=dz * (−z2) // ∫ | |
| t |
| z3 | ||
ln|t| + C = | ||
| 3 |
| x | |
= 3√3ln|t| + C | |
| t |
? niebanalne rozwiązanie
?
| t | ||
podziel równanie przez x, dostaniesz formę | ||
| x |
| t | √x2−tx | |||
( | + | ) x' = 1 | ||
| x | x |
| t | t | |||
( | + √1− | ) x' = 1 | ||
| x | x |
| t | ||
(s + √1−s ) * (− | ) *s' = 1 | |
| s2 |
| s2 | ||
s' = | ||
| −t(s+√1−s) |
| ds | s2 | ||
= | |||
| dt | −t(s+√1−s) |
| ds(s+√1−s) | dt | ||
= | |||
| s2 | −t |
| 1 | 1 | 1 | dt | |||||
( | + √ | − √ | )ds = | czy to jest dobrze do tego momentu ? | ||||
| s | s4 | s3 | −t |
całki proste do obliczzenia ale wynik dziwny