| π | √2 | |||
sin(2x+ | ) = − | |||
| 4 | 2 |
| π | √2 | |||
rozwiązywalam to tak, że podstawiałam, z= 2x+ | , nastepnie sinz=− | |||
| 4 | 2 |
| π | √2 | |||
sin ( 2 x + | ) = − | |||
| 4 | 2 |
| π | π | π | π | |||||
2 x + | = − | + 2π*k lub 2 x + | = 2π + | + 2π*k | ||||
| 4 | 4 | 4 | 4 |
| π | π | |||
Po lub powinno być 2 x + | = π + | + 2π*k − rysunek | ||
| 4 | 4 |
| π | ||
Janek, z wyrazenia "po lub" wychodzi x = | + kπ | |
| 2 |
| π | ||
mój problem polega na tym, że w odpowiedziach ze zbioru jest − | ||
| 2 |
| π | ||
x = | + π*k | |
| 2 |
| π | ||
w odp mam − | + kπ | |
| 2 |
| π | √2 | |||
sin(2x+ | )=− | |||
| 4 | 2 |
| π | π | π | 3π | |||||
2x+ | = | +π+2kπ lub 2x+ | = | +π+2kπ | ||||
| 4 | 4 | 4 | 4 |
| 3π | ||
2x=π+2kπ lub 2x= | +2kπ /:2 | |
| 2 |
| π | 3π | |||
x= | +kπ lub x= | +kπ | ||
| 2 | 4 |
| π | π | π | π | √2 | ||||||
L=sin(2* | + | )=sin(π+ | )=−sin( | )=− | =P | |||||
| 2 | 4 | 4 | 4 | 2 |
| 3π | π | 3π | π | 7π | π | |||||||
L=sin(2* | + | )=sin ( | + | )=sin( | )=sin(2π− | )= | ||||||
| 4 | 4 | 2 | 4 | 4 | 4 |
| π | √2 | |||
=−sin( | )=− | |||
| 4 | 2 |
| √2 | ||
sinx=− | ||
| 2 |
| π | π | 3π | √2 | |||||
sin | =U{√2{2} lub sin(π− | )=U{√2{2} (⇔sin | = | |||||
| 4 | 4 | 4 | 2 |
| √2 | ||
sinx=− | ||
| 2 |
| π | 3π | |||
x= | +π+2kπ lub x= | +π+2kπ | ||
| 4 | 4 |
| 5π | 7π | |||
x= | lub x= | +2kπ | ||
| 4 | 4 |
| √2 | ||
sinx=− | ||
| 2 |
| π | 3π | |||
x=− | +2kπ lub x=− | +2kπ | ||
| 4 | 4 |
| π | 7π | 3π | 5π | |||||
x=− | +2π= | lub x=− | +2π= | |||||
| 4 | 4 | 4 | 4 |
| √2 | ||
sinx= | ||
| 2 |