Mam udowonić powyższe twierdzenie
smutnazaba: ∀x,y∊R ∃z∊R taki, że x+z=y mam udowodnić to twierdzenie
6 paź 19:56
wmboczek: z=y−x=y+(−x)
dow element ma el przeciwny a zbiór R jest zamknięty ze wzgl na dodawanie
6 paź 19:59
J:
x + z = y ⇔ z = y − x i z ∊ R
6 paź 20:00
Janek191:
Może tak :
x ∊ ℛ i y ∊ℛ więc istnieje takie z ∊ ℛ : z = y − x , że x + z = x + ( y − x) =
= x + ( − x + y) = ( x + (−x)) + y = 0 + y = y
ckd.
6 paź 20:03