| 4√3 | ||
sinα= | ||
| 7 |
| 3√3 | ||
sinβ= | ||
| 14 |
| 13 | 36 | |||
cos(α−β)= | + | |||
| 98 | 98 |
| 1 | ||
cos(α−β)= | ||
| 2 |
| π | ||
α−β= | ||
| 3 |
y2 = 142 − 132 = 196 − 169 = 27
y = 3√3
−−−−−
z2 = 142 − 22 = 196 − 4 = 192 = 64*3
z = 8√3
więc
a = 11
b = z − y = 8√3 − 3√3 = 5√3
dlatego
x2 = a2 + b2 = 112 + ( 5√3)2 = 121 + 75 = 196
x = 14
=====
I AB I = 14 , I AC I = 14 i I BC I = x = 14
| π | ||
więc Δ ABC jest równoboczny, czyli α − β = 60o = | ||
| 3 |