dy | |
=−(1+5y) | |
dx |
dy | |
=−dx | |
1+5y |
1 | |
ln|1+5y|=−x+C | |
5 |
xy | 1 | |||
y' − | = | |||
1−x2 | 1−x2 |
xy | ||
y' − | = 0 | |
1−x2 |
xy | ||
dy/dx = | ||
1−x2 |
dy | x | ||
= | * dx / ∫ | ||
y | 1−x2 |
1 | ||
ln|y| = − | ln|1−x2| + C / * e... | |
2 |
1 | ||
y = [e do potęgi (− | ln|1−x2| )] * C | |
2 |
1 | ||
y = | * C(x) | |
√1−x2 |
1 | 1 | |||
y' = − | (1−x2)−3/2 * (−2x) * C(x) + | * C'(x) | ||
2 | √1−x2 |
xy | 1 | |||
y' − | = | |||
1−x2 | 1−x2 |
1 | 1 | 1 | 1 | |||||
− | (1−x2)−3/2*(−2x)*C(x)+ | *C'(x) − | *C(x)= | |||||
2 | √1−x2 | √1−x2 | 1−x2 |
1 | 1 | |||
* C'(x) = | ||||
√1−x2 | 1−x2 |
1−x2 | 1 | |||
C'(x) = ( | ) do potęgi −1 − − | |||
1−x2 | 2 |
1 | ||
C'(x) = (1−x2) do potęgi − | / ∫ | |
2 |
1 | ||
y = | * (arcsinx + C) | |
√1−x2 |
arcsinx + C | ||
y = | ||
√1−x2 |