1 | 1 | |||
t=2x+3y −> 3y= t−2x −> y = | (t−2x) => y' = | (t'−2) | ||
3 | 3 |
1 | ||
t −1 + (2t−5)( | (t'−2)) = 0 | |
3 |
1 | ||
−t+1 = | (2t−5)(t'−2) | |
3 |
−t+1 | ||
3* | = dt/dx −2 | |
2t−5 |
−t+1 | ||
3* | +2 = dt/dx | |
2t−5 |
−t+1 | ||
[3* | +2]dx = dt | |
2t−5 |
−t+1 | ||
dx = dt / [3* | +2] //troche na kartce uprościłem sb | |
2t−5 |
t−7 | ||
dx = dt / [ | ] | |
2t−5 |
dt (2t−5) | ||
dx = | //całkujemy | |
t−7 |
2t−5 | ||
∫dx = ∫ | dt | |
t−7 |
2t−5 | t−2,5 +7 − 7 | t − 7 | 4,5 | ||||
= 2* | = 2* | + 2* | |||||
t−7 | t−7 | t−7 | t−7 |