(n+1)2n2+4n | |
(n2+2n)n2+2n |
n2+2n+1 | ||
=( | )n2+n bo 2n2+4n=2(n2+2n), (n+1)2=n2+2n+1 | |
n2+2n |
1 | n2+n | |||
=(1+ | ) do potęgi (n2+2n)* | |||
n2+2n | n2+2n |
1 | ||
teraz wiemy, że (1+ | )n2+2n→e | |
n2+2n |
n2+n | 1+1n | ||
= | →1 | ||
n2+2n | 1+2n |
1 | ||
=(1+ | )n2+2n→e i koniec.. (nie trzeba nic domnaząc) | |
n2+2n |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |