1 | ||
Środkowy składnik to | sin(2x). | |
2 |
π | π | |||
Dwa skrajne to sin | cosx + cos | sinx = ... (sinus sumy) | ||
4 | 4 |
1 | 1 | ||
(sinx+cosx)2+√2(sinx+cosx)=a+ | |||
2 | 2 |
π | 1 | |||
a(x)=2sin(x+ | )+ | sin(2x). | ||
4 | 2 |
π | 1 | |||
Wartość x= | daje jedynkę w obu sinusach, czyli wartość 2 | jest bez wątpienia | ||
4 | 2 |
√2 | 1 | √2 | a | |||||
sinx + | ·2sinxcosx + | cosx = | ||||||
2 | 4 | 2 | 2 |
π | 1 | a | ||||
sin(x+ | ) + | (sin2x) = | , | |||
4 | 4 | 2 |
π | a | |||
maksymalne wartości obu składników dla x = | , czyli maksymalna wartość | jest równa | ||
4 | 2 |
1 | ||
1 + | , | |
4 |
π | ||
a'(x)=2cos(x+ | )+cos(2x). | |
4 |
1 | ||
f(x)=√2*(sinx+cosx)+ | sin(2x)⇔ | |
2 |
π | 1 | |||
f(x)=2cos(x− | )+ | sin(2x) | ||
4 | 2 |
π | 1 | |||
g(x)=2cos(x− | ) i h(x)= | sin(2x) − funkcje ograniczone | ||
4 | 2 |
π | ||
−2≤2cos(x− | )≤2 | |
4 |
1 | 1 | 1 | ||||
− | ≤ | sin(2x)≤ | ||||
2 | 2 | 2 |
π | ||
2cos(x− | )=−2⇔ | |
4 |
π | ||
cos(x− | )=−1⇔ | |
4 |
π | 1 | 5π | 1 | 1 | ||||||
x= | +π wtedy h(π)= | sin(2* | )= | *sin(5π2)= | ||||||
4 | 2 | 4 | 2 | 2 |
1 | 3 | |||
−2+ | =− | − wartość najmniejsza f(x) | ||
2 | 2 |
π | ||
2cos(x− | )=2 | |
4 |
π | ||
cos(x− | )=1 | |
4 |
π | 1 | π | 1 | |||||
x= | wtedy: h((x)= | sin(2* | )= | |||||
4 | 2 | 4 | 2 |
1 | ||
2+ | =212 − wartość największa f(x) | |
2 |
3 | 5 | |||
Zwf=<− | , | > | ||
2 | 2 |
1 | 1 | |||
f(x) = √2sinx + sinxcosx + √2cosx = √2(sinx + cosx) + | (1 + sin2x) − | = | ||
2 | 2 |
1 | 1 | 1 | 3 | |||||
= | (sinx + cosx)2+√2(sinx + cosx)− | =( | (sinx + cosx) + 1)2 − | |||||
2 | 2 | √2 | 2 |
1 | ||
−√2 ≤ sinx + cosx ≤ √2 // * | ||
√2 |
1 | ||
−1 ≤ | (sinx + cosx) ≤ 1 // + 1 | |
√2 |
1 | ||
0 ≤ | (sinx + cosx) + 1 ≤ 2 // 2 | |
√2 |
1 | 3 | |||
0 ≤ [ | (sinx + cosx) + 1]2 ≤ 4 // − | |||
√2 | 2 |
3 | 5 | |||
− | ≤ f(x) ≤ | |||
2 | 2 |
3 | 5 | |||
D = [− | , | ] | ||
2 | 2 |