⎧ | arcsinex dla x<0 | ||
f(x) | ⎩ | a+arctg(x+1) dla x≥0 |
π | ||
arcsin0= | ||
2 |
π | ||
arctg(0+1)= | ||
4 |
π | ||
arcsin(1)= | *** | |
2 |
π | ||
tutaj mamy: f(0) = a + arctg(0+1) = a + | ||
4 |
π | ||
granica lewostrona: limx→0− arcsinex = [arcsin1] = | ||
2 |
π | ||
granica prawostronna: limx→0+(a + arctg(x+1) = a + | ||
4 |
π | π | |||
obydwie granice muszą byc równe, zatem: a + | = | ⇔ | ||
4 | 2 |
π | π | π | ||||
⇔ a = | − | ⇔ a = | ||||
2 | 4 | 4 |