| ⎧ | arcsinex dla x<0 | ||
| f(x) | ⎩ | a+arctg(x+1) dla x≥0 |
| π | ||
arcsin0= | ||
| 2 |
| π | ||
arctg(0+1)= | ||
| 4 |
| π | ||
arcsin(1)= | *** | |
| 2 |
| π | ||
tutaj mamy: f(0) = a + arctg(0+1) = a + | ||
| 4 |
| π | ||
granica lewostrona: limx→0− arcsinex = [arcsin1] = | ||
| 2 |
| π | ||
granica prawostronna: limx→0+(a + arctg(x+1) = a + | ||
| 4 |
| π | π | |||
obydwie granice muszą byc równe, zatem: a + | = | ⇔ | ||
| 4 | 2 |
| π | π | π | ||||
⇔ a = | − | ⇔ a = | ||||
| 2 | 4 | 4 |