−√xsinlnx | ||
∫ | dx | |
3x |
2 | 1 | 2 | cos(ln(x)) | |||||
− | ∫ | sin(ln(x))dx=− | (√xsin(ln(x))−∫√x | dx) | ||||
3 | 2√x | 3 | x |
2 | 1 | 2 | 4 | 1 | ||||||
− | ∫ | sin(ln(x))dx=− | √xsin(ln(x))+ | ∫ | cos(ln(x))dx | |||||
3 | 2√x | 3 | 3 | 2√x |
2 | 1 | 2 | 4 | |||||
− | ∫ | sin(ln(x))dx=− | √xsin(ln(x))+ | (√xcos(ln(x | ||||
3 | 2√x | 3 | 3 |
sin(ln(x)) | ||
))−∫√x(− | )) | |
x |
2 | 1 | 2 | 4 | |||||
− | ∫ | sin(ln(x))dx=− | √xsin(ln(x))+ | √xcos(ln(x))+ | ||||
3 | 2√x | 3 | 3 |
8 | 1 | ||
∫ | sin(ln(x)) | ||
3 | 2√x |
2 | 1 | 2 | 4 | |||||
− | ∫ | sin(ln(x))dx=− | √xsin(ln(x))+ | √xcos(ln(x)) | ||||
3 | 2√x | 3 | 3 |
2 | 1 | |||
−4(− | ∫ | sin(ln(x))) | ||
3 | 2√x |
2 | 1 | 2 | 4 | |||||
5(− | ∫ | sin(ln(x))dx)=− | √xsin(ln(x))+ | √xcos(ln(x)) | ||||
3 | 2√x | 3 | 3 |
2 | 1 | 2 | 4 | |||||
− | ∫ | sin(ln(x))dx=− | √xsin(ln(x))+ | √xcos(ln(x))+C | ||||
3 | 2√x | 15 | 15 |