x(x+1) | 2 | |||
limx→∞ | − | |||
x4−1 | x4−1 |
x(x+1) | 2 | ||
− | = | ||
(x+1)(x−1)(x2+1) | (x2−1)(x2+1) |
x | 2 | ||
− | = | ||
(x−1)(x2+1) | (x2−1)(x2+1) |
x(x2−1)(x2+1)−2(x−1)(x2+1) | |
= | |
(x−1)(x2−1)(x2+1)2 |
x(x2−1)(x2+1)−2(x−1)(x2+1) | |
(x−1)(x2−1)(x2+1)2 |
(x2−1)−2(x−1) | |
= | |
(x−1)(x2−1)(x2+1) |
(x+1)−2 | |
= | |
(x2−1)(x2+1) |
(x+1)−2 | |
x4 −1 |
x*( x +1) | 2 | x2 + x − 2 | ||||
f(x) = | − | = | = | |||
x4 − 1 | x4 − 1 | x4 − 1 |
| |||||||||||||||||
= | |||||||||||||||||
|
1 + 0 − 0 | ||
lim f(x) = | = 0 | |
∞ − 0 |
(x−1)(x+2) | x+2 | |||
= lim | = lim | |||
(x−1)(x+1))(x2+1) | (x+1)(x2+1) |
3 | ||
lim f(x) = | ||
4 |