| a | ||
ośmiokącie jest równy | √4+√8 | |
| 2 |
| 0,5 a | ||
sin 22,5o = | / * 2 r | |
| r |
| a | a | ||||||||||||
r = | = | = | |||||||||||
| 2 sin 22,5o |
|
| a | √2 +√2 | a*(√2 +√2) | √2 | |||||
= | * | = | * | = | ||||
| √2 − √2 | √2 + √2 | √2 | √2 |
| a | a | |||
= | *√4 + 2√2 = | *√4 + √8 | ||
| 2 | 2 |
| a2 | ||
r2= | ||
| 2−√2 |
| a | a√2−√2 | a√2−√2(2+√2) | a | |||||
r= | = | = | = | √2(2+√2) | ||||
| √2−√2 | 2−√2 | 2 | 2 |
| a | ||
r= | √4+√8 | |
| 2 |
α=360°8=45°
r−promień okręgu opisanego na tym ośmiokącie
Korzystam z tw. cosinusów:
a2=r2+r2−2*r*r*cos45°
| √2 | ||
a2=2r2−2r2* | ||
| 2 |
| a2 | ||
r2= | ||
| 2−√2 |
| a2(2+√2) | ||
r2= | ||
| 4−2 |
| a2(2+√2) | ||
r=√ | ||
| 2 |
| a | ||
,stąd r= | √4+√8 | |
| 2 |