tgx |
| sinx | ||||||||||
∫ | dx=∫ | =∫ | = | |||||||||
cos2 | cos2x | cosx3 |
dt | 1 | |||
−∫ | = | cosx−2+C | ||
t3 | 2 |
1 | ||
t=tgx => dt= | ||
cosx2 |
t2 | 1 | |||
...=∫t dt= | +C= | (tgx)2+C | ||
2 | 2 |
1 | 1 | ||
cos−2(x) + C = | + C | ||
2 | 2cos2(x) |
1 | 1 | 1 | 1 | ||||
tg2(x) + C = | tg2(x) + | − | + C = | ||||
2 | 2 | 2 | 2 |
1 | 1 | 1 | 1 | 1 | |||||
[tg2(x) + 1] − | + C = | * | − | + C = | |||||
2 | 2 | 2 | cos2(x) | 2 |
1 | 1 | 1 | |||
− | + C = | + C1, | |||
2cos2(x) | 2 | 2cos2(x) |
1 | ||
ponieważ − | + C = C1. Pochodna ze stałej wynosi zero. | |
2 |
1 | 1 | tg(x) | ||||
[ | + C]' = [ | tg2(x) + C]' = | ||||
2cos2(x) | 2 | cos(x) |