n(4n2−1) | (n+1)(4(n+1)2−1) | ||
+(2n+1)2= | |||
3 | 3 |
n(4n2−1) | ||
Pokaż, że 12 + 32 + ... + (2n−1)2 = | , n ∊ N | |
3 |
n(2k−1)(2k+1)−3(2k+1)2 | (2k+1)(2k2+5k+3) | |||
L= | = | = | ||
3 | 3 |
2k+1)(k+1)(2k+3) | (k+1)(4k2+8k+3) | |||
= | = | |||
3 | 3 |
(k+1)(4(n2+2n+1)−1 | (k+1)(4k2+8k+3) | |||
P= | = | =L | ||
3 | 3 |
(k+1)(4k2+8k +4−1) | (k+1)(4(k2+2k+1)−1) | (k+1)(4(k+1)2−1) | ||||
lub L= | = | = | =P | |||
3 | 3 | 3 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |